CHAPTER

4 Vector Algebra

Recap Notes

VECTOR

- > A physical quantity having magnitude as well as direction is called a vector. A vector is represented by a line segment, denoted as \overrightarrow{AB} or \overrightarrow{a} . Here, point *A* is the initial point and *B* is the terminal point of the vector \overrightarrow{AB} .
- h **Magnitude :** The distance between the points *A* and *B* is called the magnitude of the directed line segment \overline{AB} . It is denoted by $|\overline{AB}|$.
- \triangleright **Position Vector :** Let *P* be any point in space, having coordinates (*x*, *y*, *z*) with respect to some fixed point $O(0, 0, 0)$ as origin, then the vector \overline{OP} having *O* as its initial point and *P* as its terminal point is called the position vector of the point *P* with respect to *O*. The vector \overline{OP} is usually denoted by \vec{r} .

Magnitude of \overrightarrow{OP} is, $|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$ *i.e.*, $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$.

In general, the position vectors of points *A*, *B*, *C*, etc. with respect to the origin *O* are denoted by \vec{a} , \vec{b} , \vec{c} , etc. respectively.

\rightarrow Direction Cosines and Direction Ratios :

The angles α , β , γ made by the vector \vec{r} with the positive directions of *x*, *y* and *z*-axes respectively are called its direction angles. The cosine values of these angles, *i.e.*, $cos\alpha$, $cos\beta$ and $cos\gamma$ are called direction cosines of the vector \vec{r} , and usually denoted by *l*, *m* and *n* respectively.

Direction cosines of *r* are given as

$$
l = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, m = \frac{y}{\sqrt{x^2 + y^2 + z^2}}
$$
 and

$$
n = \frac{z}{\sqrt{x^2 + y^2 + z^2}}
$$

The numbers *lr*, *mr* and *nr,* proportional to the The numbers u , m and w , proportional to the direction cosines of vector \vec{r} are called direction ratios of the vector \vec{r} and denoted as *a*, *b* and *c* respectively.

i.e., a = *lr*, *b* = *mr* and *c* = *nr*

Note: $l^2 + m^2 + n^2 = 1$ and $a^2 + b^2 + c^2 \neq 1$, (in general).

TYPES OF VECTORS

- \triangleright **Zero vector :** A vector whose initial and terminal points coincide is called a zero (or null) vector. It cannot be assigned a definite direction as it has zero magnitude and it is denoted by the 0 .
- Unit Vector : A vector whose magnitude is unity *i.e.*, $|\vec{a}| = 1$. It is denoted by \hat{a} .
- **Equal Vectors :** Two vectors \vec{a} and \vec{b} are said to be equal, written as $\vec{a} = \vec{b}$, iff they have equal magnitudes and direction regardless of the positions of their initial points.
- **Coinitial Vectors :** Vectors having same initial point are called co-initial vectors.
- h **Collinear Vectors :** Two or more vectors are called collinear if they have same or parallel supports, irrespective of their magnitudes and directions.
- **Negative of a Vector :** A vector having the same magnitude as that of a given vector but directed in the opposite sense is called negative of the given vector *i.e.*, $\overrightarrow{BA} = -\overrightarrow{AB}$.

ADDITION OF VECTORS

 \triangleright **Triangle law :** Let the vectors **Example 14W** . Let the vectors be \vec{a} and \vec{b} so positioned such that initial point of one coincides with terminal point of the other. If $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$.

then the vector $\vec{a} + \vec{b}$ is represented by the third side of $\triangle ABC$ *i.e.*, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

h **Parallelogram law :** If the two rananengrammaw.muletwo
vectors \vec{a} and \vec{b} are represented by the two adjacent sides *OA* and *OB* of a parallelogram *OACB*, then their sum $\vec{a} + \vec{b}$ is represented

in magnitude and direction by the diagonal *OC* of parallelogram *OACB* through their common point $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$

Properties of Vector Addition

- h Vector addition is commutative *i.e.,* $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
- h Vector addition is associative *i.e.,* $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$.
- \triangleright Existence of additive identity : The zero vector acts as additive identity *i.e.,*

 $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$ for any vector \vec{a} .

 \triangleright Existence of additive inverse : The negative of *a i e a* . ., [−] acts as additive inverse *i.e.,*

 $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$ for any vector \vec{a} .

MULTIPLICATION OF A VECTOR BY A SCALAR

 \rightarrow Let \vec{a} be a given vector and λ be a given scalar (a real number), then $\lambda \bar{a}$ is defined as the multiplication of vector \vec{a} by the scalar λ . Its magnitude is $|\lambda|$ times the modulus of \vec{a} *i.e.*, $|\lambda \vec{a}| = |\lambda| |\vec{a}|$.

Direction of $\lambda \vec{a}$ is same as that of \vec{a} if $\lambda > 0$ and *Offer a* between α and α if $\lambda < 0$.

Note : If $\lambda = \frac{1}{|\vec{a}|}$, provided that $\vec{a} \neq 0$, then $\lambda \vec{a}$

represents the unit vector in the direction of \vec{a} *i.e.* $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$

COMPONENTS OF A VECTOR

 \triangleright Let *O* be the origin and *P*(*x*, *y*, *z*) be any point in space. Let \hat{i} , \hat{j} and \hat{k} be unit vectors along the *X*-axis, *Y*-axis and *Z*-axis respectively. Then $\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$, which is called the component form of \overrightarrow{OP} . Here *x*, *y* and *z* are scalar components

of \overrightarrow{OP} and $\hat{x_i}$, $\hat{y_j}$ and $\hat{z_k}$ are vector components \overrightarrow{OP} .

Here \vec{a} is and \vec{b} are two given vectors as $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and λ be any scalar, then (i) $\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$ (ii) $\vec{a} - \vec{b} = (a_1 - b_1)\hat{i} + (a_2 - b_2)\hat{j} + (a_3 - b_3)\hat{k}$ (iii) $\lambda \vec{a} = (\lambda a_1)\hat{i} + (\lambda a_2)\hat{j} + (\lambda a_3)\hat{k}$

(iv) $\vec{a} = \vec{b} \Leftrightarrow a_1 = b_1, a_2 = b_2$ and $a_3 = b_3$

 $P_2(x_2, y_2, z_2)$

(v) \vec{a} and \vec{b} are collinear iff *^b a b a b a* 1 1 2 2 3 3 $=\frac{v_2}{v_1}=\frac{v_3}{v_2}=\lambda.$

VECTOR JOINING TWO POINTS

 \blacktriangleright If $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are any two points in the space, then the vector

joining P_1 and P_2 is the

vector $\overrightarrow{P_1P_2}$. Applying triangle law in λ ΔOP_1P_2 , we get

$$
\overrightarrow{OP_1} + \overrightarrow{P_1P_2} = \overrightarrow{OP_2}
$$

\n
$$
\Rightarrow \overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}
$$

$$
= (x_2\hat{i} + y_2\hat{j} + z_2\hat{k}) - (x_1\hat{i} + y_1\hat{j} + z_1\hat{k})
$$

$$
= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}
$$

$$
\therefore \quad |\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}
$$

SECTION FORMULA

- \blacktriangleright Let *A*, *B* be two points such that $\overrightarrow{OA} = \overrightarrow{a}$ and $\overrightarrow{OB} = \overrightarrow{b}$.
- \rightarrow The position vector \vec{r} of the point *P* which divides the line segment *AB* internally in the ratio *m* : *n* is given by $\vec{r} = \frac{mb + na}{m + n}$ $\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}.$
- \longrightarrow The position vector \vec{r} of the point *P* which divides the line segment *AB* externally in the ratio *m* : *n* is given by $\vec{r} = \frac{mb - na}{m - n}$ $\vec{r} = \frac{m\vec{b} - n\vec{a}}{m - n}.$
- \rightarrow The position vector \vec{r} of the mid-point of the line segment *AB* is given by $\vec{r} = \frac{\vec{a} + \vec{b}}{2}$.

PRODUCT OF TWO VECTORS

h **Scalar (or dot) product :** The scalar (or dot) product of two (non-zero) vectors \vec{a} and \vec{b} , denoted by $\vec{a} \cdot \vec{b}$ (read as \vec{a} dot \vec{b}), is defined as $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = ab \cos \theta$, where, $a = |\vec{a}|, b = |\vec{b}|$ and $\theta(0 \le \theta \le \pi)$ is the angle between \vec{a} and \vec{b} .

Properties of Scalar Product :

- (i) Scalar product is commutative : $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- (ii) $\vec{a} \cdot \vec{0} = 0$
- (iii) Scalar product is distributive over addition : $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

$$
(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}
$$

(iv) $\lambda(\vec{a} \cdot \vec{b}) = (\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b})$, λ be any scalar.

(v) If \hat{i} , \hat{j} and \hat{k} are three unit vectors along three mutually perpendicular lines, then *i i j j k k i j j k k i* ⋅ = ⋅ = ⋅ = 1 0 and ⋅ = ⋅ = ⋅ =

$$
i \cdot i = j \cdot j = k \cdot k = 1
$$
 and $i \cdot j = j \cdot k = k \cdot i = 0$

(vi) Angle between two non-zero vectors \vec{a} and \vec{b} is $\frac{1}{2}$

given by
$$
\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$
.
i.e., $\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}\right)$.

- (vii) Two non-zero vectors \vec{a} and \vec{b} are mutually perpendicular if and only if $\vec{a} \cdot \vec{b} = 0$
- (viii) If $\theta = 0$, then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$

If $\theta = \pi$, then $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$

 \triangleright Projection of a vector on a line :

Let the vector \overrightarrow{AB} makes an angle θ with directed line ℓ . Projection of \overrightarrow{AB} on ℓ

C

B

 $= |\overrightarrow{AB}| \cos \theta = \overrightarrow{AC} = \overrightarrow{p}$.

The vector \vec{p} is called the projection vector. Its magnitude is $|\vec{p}|$, which is known as projection of vector \overrightarrow{AB} .

Projection of a vector *a* on *^b* , is given as *a b*[⋅] *i.e.*, $\frac{1}{|\vec{b}|}(\vec{a} \cdot \vec{b})$ $\frac{1}{\overline{a}}(\vec{a}\cdot\vec{b})$.

- \rightarrow **Vector (or Cross) Product :** The vector (or cross) product of two (non-zero) vectors \vec{a} and \vec{b} (in an assigned order), denoted by $\vec{a} \times \vec{b}$ (read as \vec{a} cross \vec{b}), is defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ where $\theta(0 \le \theta \le \pi)$ is the angle between \vec{a} and \vec{b} and \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} .
- h **Properties of Vector Product :**
	- (i) Non-commutative : $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
	- (ii) Vector product is distributive over addition : $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- (iii) $\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$, λ be any scalar.
- (iv) $(\lambda_1 \vec{a}) \times (\lambda_2 \vec{b}) = \lambda_1 \lambda_2 (\vec{a} \times \vec{b})$
- (v) $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$
- (vi) Two non-zero vectors \vec{a} , \vec{b} are collinear if and only if $\vec{a} \times \vec{b} = \vec{0}$

Similarly, $\vec{a} \times \vec{a} = \vec{0}$ and $\vec{a} \times (-\vec{a}) = \vec{0}$, since in the first situation $\theta = 0$ and in the second one, $\theta = \pi$, making the value of sin θ to be 0.

(vii) If \vec{a} and \vec{b} represent the adjacent sides of a triangle as given in the figure. Then,

Area of triangle $ABC = \frac{1}{2}AB \cdot CD$

$$
= \frac{1}{2} |\vec{b}| |\vec{a}| \sin \theta = \frac{1}{2} |\vec{a} \times \vec{b}|
$$

(viii) If \vec{a} and \vec{b} represent the adjacent sides of a parallelogram as given in the figure.

$$
\left|\frac{P}{\frac{1}{\theta}\left|\frac{1}{\theta}\right|}\right|_{B}
$$

Then, area of parallelogram *ABCD* = *AB*⋅*DE*

$$
= |\vec{b}| |\vec{a}| \sin \theta = |\vec{a} \times \vec{b}|
$$

(ix) If
$$
\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}
$$
, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$,
\nThen, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
\n $= (a_2b_3 - a_3b_2)\hat{i} + (a_3b_1 - a_1b_3)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$

(x) Angle between two vectors \vec{a} and \vec{b} is given by

$$
\sin\theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|}
$$

$$
i.e., \theta = \sin^{-1}\left(\frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|}\right)
$$

Practice Time

OBJECTIVE TYPE QUESTIONS

Multiple Choice Questions (MCQs)

1. Find the sum of the vectors $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$. (a) $-4\hat{j} - \hat{k}$ (b) $-\hat{i} - 4\hat{j} - \hat{k}$ (c) ⁴ *j k* ⁺ (d) *i j* [−] ⁴ **2.** The magnitude of the vector $\vec{a} = 3\hat{i} - 2\hat{j} + 6\hat{k}$ is equal to (a) 6 (b) 7 (c) 7.5 (d) 8.5 **3.** $(\vec{a} \cdot \hat{i})^2 + (\vec{a} \cdot \hat{j})^2 + (\vec{a} \cdot \hat{k})^2$ is equal to (a) 1 (b) $|\vec{a}|$ (c) $-\vec{a}$ (d) $|\vec{a}|^2$ **4.** If *ABCD* is a rhombus, whose diagonals intersect at *E*, then $\overline{EA} + \overline{EB} + \overline{EC} + \overline{ED}$ equals (a) $\vec{0}$ 0 (b) *AD* \overrightarrow{AD} (c) $\overrightarrow{2BC}$ (d) $\overrightarrow{2AD}$ **5.** If $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 4\hat{i} + 4\hat{j} - 2\hat{k}$ then find the angle between the vectors \vec{a} and \vec{b} . (a) 0 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$ 4 **6.** The projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2 \hat{j} + \hat{k}$ is (a) $\frac{10}{6}$ 6 (b) $\frac{10}{6}$ 3 (c) $\frac{5}{7}$ 6 (d) $\frac{5}{7}$ 3 **7.** If *A* and *B* are the points $(-3, 4, -8)$ and $(5, -6, 4)$ respectively, then find the ratio in which *yz*-plane divides *AB*. (a) 5 : 2 (b) 7 : 5 (c) 3 : 5 (d) 5 : 3 **8.** The vector in the direction of the vector \hat{i} – $2\hat{i}$ + $2\hat{k}$ that has magnitude 9 is (a) $\hat{i} - 2\hat{j} + 2\hat{k}$ (b) $\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$ (c) $3(\hat{i} - 2\hat{j} + 2\hat{k})$ (d) $9(\hat{i} - 2\hat{j} + 2\hat{k})$ **9.** If the angle between $\hat{i} + \hat{k}$ and $\hat{i} + \hat{j} + a\hat{k}$ is π 3 then the value of *a* is (a) 0 or 2 (b) -4 or 0 (c) 0 or -2 (d) 2 or -2

value of *x*.
\n(a)
$$
\frac{2}{3}
$$
 (b) $\frac{-1}{3}$ (c) $\frac{-2}{3}$ (d) $\frac{1}{3}$
\n**16.** If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$, then
\n $|\vec{a} \times \vec{b}|$ is equal to
\n(a) $\sqrt{507}$ (b) $\sqrt{506}$ (c) $\sqrt{508}$ (d) $\sqrt{509}$

17. $(\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) \cdot (\hat{k} + \hat{i})$ is equal to (a) 0 (b) 1 (c) 2 (d) -1

18. If \vec{a} and \vec{b} are two unit vectors inclined to *x*-axis at angles 30° and 120° respectively, then $|\vec{a} + \vec{b}|$ equals

(a) $\sqrt{\frac{2}{3}}$ (b) $\sqrt{2}$ (c) $\sqrt{3}$ (d) 2

19. If \vec{b} and \vec{c} are any two non-collinear unit vectors and \vec{a} is any vector, then find the value
of $(\vec{a} \cdot \vec{b})\vec{b} + (\vec{a} \cdot \vec{c})\vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{a}|} \cdot (\vec{b} \times \vec{c})$.

of
$$
(\vec{a} \cdot \vec{b})\vec{b} + (\vec{a} \cdot \vec{c})\vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|} \cdot (\vec{b} \times \vec{c})
$$
.
\n(a) $\vec{a} + \vec{b} + \vec{c}$
\n(b) \vec{c}
\n(c) \vec{a}
\n(d) \vec{b}

20. If \vec{a} and \vec{b} are unit vectors enclosing an angle θ and $|\vec{a} + \vec{b}| < 1$, then

(a)
$$
\theta = \frac{\pi}{2}
$$

\n(b) $\theta < \frac{\pi}{3}$
\n(c) $\pi \ge \theta > \frac{2\pi}{3}$
\n(d) $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$

21. If $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$, then the value of $|\vec{a} \times \vec{b}|$ is

(a) 5 (b) 10 (c) 14 (d) 16

22. If $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$, then $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are

- (a) parallel (b) perpendicular
- (c) skew (d) None of these

23. Area of a parallelogram whose adjacent sides are represented by the vectors $2\hat{i} - 3\hat{k}$ and $4\hat{i} + 2\hat{k}$ is

(a) $4\sqrt{14}$ sq. units (b) $2\sqrt{7}$ sq. units

(c)
$$
4\sqrt{7}
$$
 sq. units (d) $4\sqrt{19}$ sq. units

24. The direction ratios of the vector $3\vec{a} + 2\vec{b}$, where $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ are (a) 7, 5, 4 (b) 7, -5, 4 (c) $-7, 5, 4$ (d) $7, 5, -4$

25. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4, respectively and $\vec{a} \cdot \vec{b} = 2\sqrt{3}$ is

(a)
$$
\frac{\pi}{6}
$$
 (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{5\pi}{2}$

26. The position vector of the point which divides the joining of points $2\vec{a} - 3\vec{b}$ and $\vec{a} + \vec{b}$ in the ratio 3 : 1 is

(a)
$$
\frac{3\vec{a} - 2b}{2}
$$
 (b) $\frac{7\vec{a} - 8b}{4}$
(c) $\frac{3\vec{a}}{4}$ (d) $\frac{5\vec{a}}{4}$

(c)
$$
\frac{3a}{4}
$$
 (d) $\frac{3a}{4}$

27. If $|\vec{a}| = 4$ and $-3 \le \lambda \le 3$, then the range of λ *a* is

- (a) $[0, 8]$ (b) $[-12, 8]$
- (c) [0, 12] (d) [8, 12]

28. If $(2 \hat{i} + 6 \hat{j} + 27 \hat{k}) \times (\hat{i} + p \hat{j} + q \hat{k}) = \vec{0}$, then the values of *p* and *q* are

(a)
$$
p = 6, q = 27
$$

\n(b) $p = 3, q = \frac{27}{2}$
\n(c) $p = 6, q = \frac{27}{2}$
\n(d) $p = 3, q = 27$

29. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then write the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

(a)
$$
\frac{3}{2}
$$
 (b) 3 (c) $\frac{-3}{2}$ (d) -3

30. Find the value of λ for which the vectors $3\hat{i} - 6\hat{j} + \hat{k}$ and $2\hat{i} - 4\hat{j} + \lambda\hat{k}$ are parallel.

(a)
$$
\frac{2}{3}
$$
 (b) $\frac{-3}{2}$ (c) $\frac{-2}{3}$ (d) $\frac{3}{2}$

31. Find the value of λ so that the vectors $2\hat{i} - 4\hat{j} + \hat{k}$ and $4\hat{i} - 8\hat{j} + \lambda\hat{k}$ are perpendicular. (a) 20 (b) -40 (c) 40 (d) -20

32. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $2\hat{i} - 3\hat{j} + 6\hat{k}$.

(a)
$$
5
$$
 (b) 6 (c) 7 (d) 8

33. The vector having initial and terminal points as $(2, 5, 0)$ and $(-3, 7, 4)$ respectively is

(a)
$$
-\hat{i} + 12\hat{j} + 4\hat{k}
$$

\n(b) $5\hat{i} + 2\hat{j} - 4\hat{k}$
\n(c) $-5\hat{i} + 2\hat{j} + 4\hat{k}$
\n(d) $\hat{i} + \hat{j} + \hat{k}$

34. The vectors from origin to the points *A* and *B* are $\vec{a} = 2\hat{i} - 3\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively, then the area of triangle *OAB* (in sq. units) is

(a)
$$
\sqrt{340}
$$
 (b) $\sqrt{325}$

(c)
$$
\sqrt{229}
$$
 (d) $\frac{1}{2}\sqrt{229}$

35. If $|\vec{a}| = 3$, $|\vec{b}| = 4$, then the value of λ for which $\vec{a} + \lambda \vec{b}$ is perpendicular to $\vec{a} - \lambda \vec{b}$, is

(a)
$$
\frac{9}{16}
$$
 (b) $\frac{3}{4}$ (c) $\frac{3}{2}$ (d) $\frac{4}{3}$

Case Based MCQs

Case I : Read the following passage and answer the questions from 36 to 40.

Ginni purchased an air plant holder which is in the shape of a tetrahedron.

Let *A*, *B*, *C* and *D* are the coordinates of the air plant holder where $A = (1, 1, 1), B = (2, 1, 3), C = (3, 2, 2)$ and $D = (3, 3, 4)$.

- **36.** Find the position vector of \overrightarrow{AB} .
- (a) $-\hat{i} 2\hat{k}$ (b) $2\hat{i} + \hat{k}$ (c) $\hat{i} + 2\hat{k}$ (d) $-2\hat{i} - \hat{k}$
- **37.** Find the position vector of *AC* \overline{z} .
- (a) $2\hat{i} \hat{j} \hat{k}$ (b) $2\hat{i} + \hat{j} + \hat{k}$ (c) $-2\hat{i} - \hat{j} + \hat{k}$ (d) $\hat{i} + 2\hat{j} + \hat{k}$
- **38.** Find the position vector of \overrightarrow{AD} .
- (a) $2\hat{i} 2\hat{j} 3\hat{k}$ (b) $\hat{i} + \hat{j} 3\hat{k}$
- (c) $3\hat{i} + 2\hat{j} + 2\hat{k}$ (d) $2\hat{i} + 2\hat{j} + 3\hat{k}$
- **39.** Area of $\triangle ABC$ =
- (a) $\frac{\sqrt{11}}{2}$ sq. units (b) $\frac{\sqrt{14}}{2}$ sq. units $\sqrt{13}$

(c)
$$
\frac{\sqrt{13}}{2}
$$
 (d) $\frac{\sqrt{17}}{2}$ sq. units

40. Find the unit vector along \overrightarrow{AD} .

(a)
$$
\frac{1}{\sqrt{17}}(2\hat{i} + 2\hat{j} + 3\hat{k})
$$
 (b) $\frac{1}{\sqrt{17}}(3\hat{i} + 3\hat{j} + 2\hat{k})$

(c) $\frac{1}{\sqrt{2}}$ 11 $(2\hat{i} + 2\hat{j} + 3\hat{k})$ (d) $(2\hat{i} + 2\hat{j} + 3\hat{k})$

Case II : Read the following passage and answer the questions from 41 to 45.

Three slogans on chart papers are to be placed on a school bulletin board at the points *A*, *B* and

C displaying *A* (Hub of Learning), *B* (Creating a better world for tomorrow) and *C* (Education comes first). The coordinates of points *A*, *B* and *C* are $(1, 4, 2), (3, -3, -2)$ and $(-2, 2, 6)$ respectively.

41. Let \vec{a}, \vec{b} and \vec{c} be the position vectors of points *A*, *B* and *C* respectively, then $\vec{a} + \vec{b} + \vec{c}$ is equal to

- (a) 2 3 *i j* ⁶*^k* + + (b) 2 3 *i j* ⁶*^k* − − (c) $2\hat{i} + 8\hat{j} + 3\hat{k}$ (d) $2(7\hat{i} + 8\hat{j} + 3\hat{k})$ **42** Which of the following is not true? (a) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ (b) $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$ (c) $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$ (d) $\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$ **43** Area of D*ABC* is (a) 19 sq. units (b) $\sqrt{1937}$ sq. units (c) $\frac{1}{2}\sqrt{1937}$ sq. units (d) $\sqrt{1837}$ sq. units **44.** Suppose, if the given slogans are to be placed on a straight line, then the value of $|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$ will be equal to (a) -1 (b) -2 (c) 2 (d) 0 **45.** If $\vec{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$, then unit vector in the
- direction of vector \vec{a} is
- (a) $\frac{2}{7}$ 3 7 $\hat{i} - \frac{3}{7}\hat{j} - \frac{6}{7}\hat{k}$ (b) $\frac{2}{7}$ 3 7 $\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}$ (c) $\frac{3}{7}$ 2 7 $\hat{i} + \frac{2}{7}\hat{j} + \frac{6}{7}\hat{k}$ (d) None of these

Case III : Read the following passage and answer the questions from 46 to 50.

A barge is pulled into harbour by two tug boats as shown in the figure.

- **46.** Position vector of *A* is
- (a) $4\hat{i} + 2\hat{j}$ (b) $4\hat{i} + 10\hat{j}$
- (c) $4\hat{i} 10\hat{j}$ (d) $4\hat{i} 2\hat{j}$
- **47.** Position vector of *B* is
- (a) $4\hat{i} + 4\hat{j}$ (b) $6\hat{i} + 6\hat{j}$
- (c) $9\hat{i} + 7\hat{j}$ (d) $3\hat{i} + 3\hat{j}$
- **48.** Find the vector *AC* \overline{z}
- (a) $8j$ \hat{j} (b) $-8\hat{j}$
- (c) $8\hat{i}$ (d) None of these

.

49. If $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$, then its unit vector is

(a)
$$
\frac{\hat{i}}{\sqrt{14}} + \frac{2\hat{j}}{\sqrt{14}} + \frac{3\hat{k}}{\sqrt{14}}
$$
 (b) $\frac{3\hat{i}}{\sqrt{14}} + \frac{2\hat{j}}{\sqrt{14}} + \frac{\hat{k}}{\sqrt{14}}$
(c) $\frac{2\hat{i}}{\sqrt{14}} + \frac{3\hat{j}}{\sqrt{14}} + \frac{\hat{k}}{\sqrt{14}}$ (d) None of these

$$
\sqrt{14} \quad \sqrt{14} \quad \sqrt{14}
$$

50. If $\vec{A} = 4\hat{i} + 3\hat{j}$ and $\vec{B} = 3\hat{i} + 4\hat{j}$, then

$$
|\vec{A}| + |\vec{B}| =
$$

(a) 12 (b) 13 (c) 14 (d) 10

Assertion & Reasoning Based MCQs

Directions (Q.-51 to 60): In these questions, a statement of Assertion is followed by a statement of Reason is given. Choose the correct answer out of the following choices :

- (a) Assertion and Reason both are correct statements and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason both are correct statements but Reason is not the correct explanation of Assertion.
- (c) Assertion is correct statement but Reason is wrong statement.
- (d) Assertion is wrong statement but Reason is correct statement.

51. Assertion : The magnitude of the resultant of vectors $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ is $\sqrt{34}$.

Reason : The magnitude of a vector can never be negative.

52. Assertion: The unit vector in the direction of sum of the vectors $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} - \hat{j} - \hat{k}$ and $2\hat{j} + 6\hat{k}$ is $-\frac{1}{7}(3\hat{i}+2\hat{j}+6\hat{k}).$ \overline{a}

Reason : Let \vec{a} be a non-zero vector, then $\frac{1}{2}$ *a a* is a unit vector parallel to *a* .

53. Let $\vec{a} = \hat{i} + \hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$.

Assertion : Vectors \vec{a} and \vec{b} are perpendicular to each other.

Reason : $\vec{a} \cdot \vec{b} = 0$

54. Assertion : The adjacent sides of a parallelogram are along $\vec{a} = \hat{i} + 2\hat{j}$ and $\vec{b} = 2\hat{i} + \hat{j}$.

The angle between the diagonals is 150°. **Reason :** Two vectors are perpendicular to each other if their dot product is zero.

55. Assertion : If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$,
 $|\vec{b}| = 4$, $|\vec{c}| = 5$, then $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is equal $to -25.$

Reason: If
$$
\vec{a} + \vec{b} + \vec{c} = \vec{0}
$$
, then the angle θ between \vec{b} and \vec{c} is given by $\cos\theta = \frac{\vec{a}^2 - \vec{b}^2 - \vec{c}^2}{2\vec{b}\vec{c}}$.

56. Assertion : The length of projection of the vector $3\hat{i} - \hat{j} - 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} - 3\hat{k}$ is 7

$$
\frac{1}{\sqrt{14}}\,.
$$

Reason : The projection of a vector *a* on another \vec{z} \vec{L}

vector
$$
\vec{b}
$$
 is $\frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|}$.

57. Let \vec{a} and \vec{b} be proper vectors and θ be the angle between them.

Assertion $: (\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 \neq (\vec{a})^2 (\vec{b})^2$ **Reason** : $\sin^2\theta + \cos^2\theta = 1$

58. Assertion : If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 400$ and $|\vec{a}| = 4$, then $|\vec{b}| = 9$.

Reason : If \vec{a} and \vec{b} are any two vectors, then $(\vec{a} \times \vec{b})^2$ is equal to $(\vec{a})^2 (\vec{b})^2 - (\vec{a} \cdot \vec{b})^2$.

59. Assertion : If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$ then projection of on .

Reason : Projection of \vec{a} on $\vec{b} = \frac{3}{\sqrt{26}}$.

60. Assertion : Three points with position vectors $\vec{a} \cdot \vec{b}$ and \vec{c} are collinear if $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$ **Reason :** If $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$, then $\overrightarrow{AB} \perp \overrightarrow{AC}$.

SUBJECTIVE TYPE QUESTIONS

Very Short Answer Type Questions (VSA)

1. If a unit vector *a* \vec{a} makes angles $\frac{\pi}{4}$ $\frac{\pi}{3}$ with \hat{i} , π $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find the value of θ .

2. Find the sum of the following vectors.
 $\vec{a} = \hat{i} - 3\hat{k}, \vec{b} = 2\hat{j} - \hat{k}, \vec{c} = 2\hat{i} - 3\hat{j} + 2\hat{k}$

3. Find a unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$ and $\vec{b} = 4\hat{i} - 3\hat{j} + 2\hat{k}$.

4. *L* and *M* are two points with position vectors $2\vec{a} - \vec{b}$ and $\vec{a} + 2\vec{b}$ respectively. What is the position vector of a point *N* which divides the line segment *LM* in the ratio 2 : 1 externally ?

5. Find the value of $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2$ if $|\vec{a}| = 5$ and $|\vec{b}| = 4$.

6. Find the area of a parallelogram whose adjacent sides are represented by the vectors \hat{i} – 3 \hat{k} and $2\hat{i}$ + \hat{k} .

7. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$.

8. If \vec{a} and \vec{b} are unit vectors, then find the angle between \vec{a} and \vec{b} , given that $(\sqrt{2} \vec{a} - \vec{b})$ is a unit vector.

9. Find the angle between *x*-axis and the vector $\hat{i} + \hat{j} + \hat{k}$.

10. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$, then prove that vector $2\vec{a} + \vec{b}$ is perpendicular to vector \vec{b} .

Short Answer Type Questions (SA-I)

11. *X* and *Y* are two points with position vectors $3\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$ respectively. Write the position vector of a point *Z* which divides the line segment *XY* in the ratio 2 : 1 externally.

12. Find a unit vector perpendicular to each of the vectors \vec{a} and \vec{b} and where $\vec{a} = 5\hat{i} + 6\hat{j} - 2\hat{k}$ and $\vec{b} = 7\hat{i} + 6\hat{j} + 2\hat{k}$.

13. Show that for any two non-zero vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ iff \vec{a} and \vec{b} are perpendicular vectors.

14. Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $3\hat{i} + 7\hat{j} + \hat{k}$

and $5\hat{i} + 6\hat{j} + 2\hat{k}$ form the sides of a right-angled triangle.

15. If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$, then find the value of $(3\vec{a}-5\vec{b}) \cdot (2\vec{a}+7\vec{b}).$

16. Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$ be two vectors. Show that the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are perpendicular to each other.

17. If θ is the angle between two vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$, then find sin θ .

18. Find $| 2a \cdot (-b \times 3\vec{c}) |$, where

 $\vec{a} = \hat{i} - \hat{i} + 2\hat{k}, \ \vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k} \text{ and } \vec{c} = 2\hat{i} - \hat{i} + 3\hat{k}.$

Short Answer Type Questions (SA-II)

21. The two vectors $\hat{j}+\hat{k}$ and $3\hat{i}-\hat{j}+4\hat{k}$ represent the two sides *AB* and *AC*, respectively of a D*ABC*. Find the length of the median through *A*.

22. Find a vector of magnitude 5 units and parallel to the resultant of the vectors $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$.

23. Let $\vec{a} = 4\hat{i} + 5\hat{j} - \hat{k}, \vec{b} = \hat{i} - 4\hat{j} + 5\hat{k}$ and

 $\vec{c} = 3\hat{i} + \hat{j} - \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{c} and \vec{b} and $\vec{d} \cdot \vec{a} = 21$.

24. The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$.

25. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, show that $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$.

26. Dot product of a vector with vectors $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} - 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.

27. Find the values of λ for which the angle between the vectors $\vec{a} = 2\lambda^2 \hat{i} + 4\lambda \hat{j} + \hat{k}$ and $\vec{b} = 7\hat{i} - 2\hat{j} + \lambda \hat{k}$ is obtuse.

$$
\bigcirc
$$

Long Answer Type Questions (LA)

36. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} . Also, find the angle which $\vec{a} + \vec{b} + \vec{c}$ makes with \vec{a} or \vec{b} or \vec{c} .

37. Show that the points *A*, *B*, *C* with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle.

38. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} - 5\hat{k}$ and $2\hat{i} + 2\hat{j} + 3\hat{k}$. Find the two

19. If
$$
\vec{a} = 2\hat{i}+3\hat{j}+\hat{k}
$$
, $b = \hat{i}-2\hat{j}+\hat{k}$ and
\n $\vec{c} = -3\hat{i}+\hat{j}+2\hat{k}$, then find $\vec{a} \cdot (\vec{b} \times \vec{c})$.

20. If
$$
\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}
$$
, find $(\vec{r} \times \hat{i}) \cdot (\vec{r} \times \hat{j}) + xy$.

28. Using vectors, find the area of the triangle with vertices *A*(1, 1, 2), *B*(2, 3, 5) and *C*(1, 5, 5).

29. If \vec{a} , \vec{b} and \vec{c} are three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$ and each one of them is perpendicular to the sum of the other two, then find $|\vec{a} + \vec{b} + \vec{c}|$.

30. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram.

31. Using vectors, find the area of the triangle *ABC* with vertices *A*(1, 2, 3), *B*(2, –1, 4) and $C(4, 5, -1)$

32. If $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{i} - 4\hat{j} - 5\hat{k}$, then find a unit vector perpendicular to both of the vectors $(\vec{a} - \vec{b})$ and $(\vec{c} - \vec{b})$.

33. Find a unit vector perpendicular to both of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

34. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.

35. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$, find a vector \vec{c} , such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.

39. If $\vec{a} = 3\hat{i} - \hat{j}$ and $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$ then express \vec{b} in the form $\vec{b} = \vec{b}_1 + \vec{b}_2$ where $\vec{b}_1 \parallel \vec{a}$ and $\vec{b}_2 \perp \vec{a}$.

40. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ respectively are the position vectors of points *A*, *B*, *C* and *D*, then find the angle between the straight lines *AB* and *CD*. Find whether \overrightarrow{AB} and \overrightarrow{CD} are collinear or not.

ANSWERS

OBJECTIVE TYPE QUESTIONS

1. (a) : The given vectors are $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$, $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$ \therefore Required sum = $\vec{a} + \vec{b} + \vec{c}$ $= (\hat{i} - 2\hat{j} + \hat{k}) + (-2\hat{i} + 4\hat{j} + 5\hat{k}) + (\hat{i} - 6\hat{j} - 7\hat{k})$ $=-4 \hat{i} - \hat{k}$. **2. (b)**: Here, $\vec{a} = 3\hat{i} - 2\hat{j} + 6\hat{k}$ \therefore Its magnitude = $\frac{a}{a}$ $=\sqrt{3^2 + (-2)^2 + 6^2} = \sqrt{9 + 4 + 36} = \sqrt{49} = 7.$ **3. (d) :** Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k} \implies |(\vec{a} \cdot \hat{i})^2 = x^2$ Similarly, $(\vec{a} \cdot \hat{i})^2 = v^2$ and $(\vec{a} \cdot \hat{k})^2 = z^2$ ∴ $(\vec{a} \cdot \hat{i})^2 + (\vec{a} \cdot \hat{j})^2 + (\vec{a} \cdot \hat{k})^2 = x^2 + y^2 + z^2 = |\vec{a}|^2$ **4. (a)**: $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$ $=\overrightarrow{EA}+\overrightarrow{EB}-\overrightarrow{EA}-\overrightarrow{EB}$ [As diagonals of a rhombus bisect each other] $=$ $\vec{0}$ **5. (c) :** We have, $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 4\hat{i} + 4\hat{j} - 2\hat{k}$ Now, $\vec{a} \cdot \vec{b} = (2 \hat{i} - \hat{j} + 2 \hat{k}) \cdot (4 \hat{i} + 4 \hat{j} - 2 \hat{k})$ $= 8 - 4 - 4 = 0$. Therefore, $\vec{a} \cdot \vec{b} = 0 \implies \cos \theta = 0$ So, angle between \vec{a} and \vec{b} is $\frac{\pi}{2}$. **6. (a) :** We have, $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ ∴ $\vec{a} \cdot \vec{b} = (2\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (\hat{i} + 2\hat{j} + \hat{k}) = 2 + 6 + 2 = 10$ and $|\vec{b}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$ Hence, projection of \vec{a} on \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{10}{\sqrt{6}}$. **7. (c) :** Let $\vec{a} = -3\hat{i} + 4\hat{j} - 8\hat{k}$, $\vec{b} = 5\hat{i} - 6\hat{j} + 4\hat{k}$ Let $C(\vec{c})$ be the point in *yz*-plane which divides \overrightarrow{AB} in the ratio *r* : 1. Then, $0 = \frac{5r - 3}{r + 1}$ *r* \therefore In *yz*-plane, $x = 0$) \Rightarrow 5r - 3 = 0 \Rightarrow r = $\frac{3}{5}$ Thus required ratio is 3 : 5 **8. (c) :** Let $\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$ \therefore $|\vec{a}| = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$ ∴ Required vector = $\frac{9(\hat{i} - 2\hat{j} + 2\hat{k})}{3} = 3(\hat{i} - 2\hat{j} + 2\hat{k})$ **9. (b)**: We have, $\cos \frac{\pi}{3} = \frac{(i+k) \cdot (i+j+a)}{\sqrt{2} \sqrt{1+1+a^2}}$ $(i + k) \cdot (i + j + ak)$ *a* $\hat{i} + \hat{k} \cdot (\hat{i} + \hat{i} + a\hat{k})$

$$
\frac{1}{2} = \frac{1+a}{\sqrt{2}\sqrt{2+a^2}} \Rightarrow \frac{1}{4} = \frac{(1+a)^2}{2(2+a^2)}
$$

\n⇒ 2 + a² = 2(1 + a² + 2a) ⇒ a² + 4a = 0 ⇒ a = 0, -4
\n10. (a) : Given, $|\vec{a}-\vec{b}|=|\vec{a}|=|\vec{b}|=1$
\n⇒ $|\vec{a}-\vec{b}|^2=|\vec{a}|^2+|\vec{b}|^2-2\vec{a}\cdot\vec{b} \Rightarrow 1=1+1-2|\vec{a}||\vec{b}|\cos\theta$
\n(Here θ is angle between \vec{a} and \vec{b})
\n⇒ $\cos\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$
\n11. (b): Here, $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $b\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and
\n $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$
\nNow, $\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = 3\hat{i} + 5\hat{j} - 7\hat{k}$
\n $\therefore \vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} + \hat{j} + 3\hat{k}) \cdot (3\hat{i} + 5\hat{j} - 7\hat{k})$
\n $= 2 \times 3 + 1 \times 5 + 3 \times (-7)$
\n $= 6 + 5 - 21 = -10$
\n12. (b): Given, $|\vec{a}| = |\vec{b}|$, $\theta = 60^\circ$ and $\vec{a} \cdot \vec{b} = \frac{9}{2}$
\nNow, $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
\n $\Rightarrow \cos 60^\circ = \frac{9/2}{|\vec{a}|^2} \Rightarrow \frac{1}{2} = \frac{9/2}{|\vec{a}|^$

15. (d): We have, $\vec{c} = (x-2) \vec{a} + \vec{b}$, $\vec{d} = (2x+1) \vec{a} - \vec{b}$ are collinear, then $\vec{c} = m\vec{d}$ \Rightarrow $(x - 2)\vec{a} + \vec{b} = m((2x + 1)\vec{a} - \vec{b})$ \Rightarrow $-m=1 \Rightarrow m=-1$ and *m* $(2x + 1) = x - 2 \Rightarrow -2x - 1 = x - 2 \Rightarrow x = \frac{1}{3}$ **16.** (a) : We have, $\vec{a} \times \vec{b}$ *i j k* $\times b =$ − \hat{r} \hat{r} \hat{r} 2 1 3 $3 \quad 5 \quad -2$ $=\hat{i}(-2-15)-(-4-9)\hat{j}+(10-3)\hat{k} = -17\hat{i}+13\hat{j}+7\hat{k}$ Hence, $|\vec{a} \times \vec{b}| = \sqrt{(-17)^2 + (13)^2 + (7)^2} = \sqrt{507}$ **17. (c) :** $(\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) \cdot (\hat{k} + \hat{i}) = (\hat{i} \times \hat{j} + \hat{i} \times \hat{k} + \hat{j} \times \hat{k}) \cdot (\hat{k} + \hat{i})$ $= (\hat{k} - \hat{j} + \hat{i}) \cdot (\hat{k} + \hat{i}) = \hat{k} \cdot \hat{k} + \hat{i} \cdot \hat{i}$ ($\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$) $= |\hat{k}|^2 + |\hat{i}|^2 = 1 + 1 = 2$ **18. (b) :** Clearly, angle between \vec{a} and \vec{b} is $\frac{\pi}{2}$. $\Rightarrow \vec{a} \cdot \vec{b} = 0$ ∴ $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 1 + 1 + 0 = 2$ \Rightarrow $|\vec{a} + \vec{b}| = \sqrt{2}$ **19. (c) :** Let $\vec{b} = \hat{i}$ and $\vec{c} = \hat{j}$ and $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ Now, $\vec{a} \cdot \vec{b} = a_1 \cdot \vec{a} \cdot \vec{c} = a_2$ and $\vec{a} \cdot \frac{\vec{b} \times \vec{c}}{|\vec{b} \times \vec{c}|} = \vec{a} \cdot \hat{k} = a_3$ \therefore $(\vec{a} \cdot \vec{b})\vec{b} + (\vec{a} \cdot \vec{c})\vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{1}$ $(\vec{a} \cdot \vec{b})\vec{b} + (\vec{a} \cdot \vec{c})\vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|} (\vec{b} \times \vec{c})$ $= a_1 \vec{b} + a_2 \vec{c} + a_3 \hat{k} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} = \vec{a}$ **20. (c) :** $|\vec{a} + \vec{b}| < 1 \Rightarrow |\vec{a} + \vec{b}|^2 < 1$ $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} < 1 \Rightarrow 1 + 1 + 2\vec{a} \cdot \vec{b} < 1$ [: $|\vec{a}| = |\vec{b}| = 1$] $\Rightarrow \vec{a} \cdot \vec{b} < -\frac{1}{2} \Rightarrow |\vec{a}| |\vec{b}| \cos \theta < -\frac{1}{2}$ $\cos\theta < -\frac{1}{2}$ \Rightarrow 1 × 1 × cos $\theta < -\frac{1}{2} \Rightarrow \cos \theta < -$ 2 $\cos \theta < -\frac{1}{2} \Rightarrow \cos \theta < -\frac{1}{2}$ $\Rightarrow -1 \leq \cos \theta < -\frac{1}{2} \Rightarrow \pi \geq \theta >$ 2 $\cos\theta < -\frac{1}{2} \Rightarrow \pi \ge \theta > \frac{2\pi}{3}$ **21. (d) :** $|\vec{a}| = 10$, $|\vec{b}| = 2$, $\vec{a} \cdot \vec{b} = 12$ We know, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ \Rightarrow 12 = 10 × 2cos $\theta \Rightarrow \cos \theta = \frac{3}{5}$ \therefore $\sin \theta = \frac{4}{5}$ Now, $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta = 10 \times 2 \times \frac{4}{\pi} =$ $\frac{1}{5}$ = 16

22. (b):
$$
(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b}
$$

\t $= \vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{b} \qquad [\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}]$
\t $= |\vec{a}|^2 - |\vec{b}|^2 = [1^2 + 2^2 + (-3)^2] - [3^2 + (-1)^2 + 2^2] = 0$
\t $\Rightarrow (\vec{a} + \vec{b}) \perp (\vec{a} - \vec{b})$
23. (a): Let $\vec{a} = 2\hat{i} - 3\hat{k}$ and $\vec{b} = 4\hat{j} + 2\hat{k}$
\tThe area of a parallelogram with \vec{a} and \vec{b} as its adjacent sides is given by $|\vec{a} \times \vec{b}|$.
\tNow, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -3 \\ 0 & 4 & 2 \end{vmatrix} = 12\hat{i} - 4\hat{j} + 8\hat{k}$
\tNow, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -3 \\ 0 & 4 & 2 \end{vmatrix} = 12\hat{i} - 4\hat{j} + 8\hat{k}$
\t $\therefore |\vec{a} \times \vec{b}| = \sqrt{(12)^2 + (-4)^2 + (8)^2} = \sqrt{144 + 16 + 64}$
\t $= \sqrt{224} = 4\sqrt{14}$ sq. units.
24. (b): We have, $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$, $\vec{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}$
\t $\therefore 3\vec{a} + 2\vec{b} = 3(\hat{i} + \hat{j} - 2\hat{k}) + 2(2\hat{i} - 4\hat{j} + 5\hat{k})$
\t $= (3\hat{i}$

$$
\Rightarrow 6q - 27p = 0, 2q - 27 = 0 \text{ and } 2p - 6 = 0
$$

$$
\Rightarrow q = \frac{27}{2} \text{ and } p = 3.
$$

29. (c) **:** We have \vec{a} , \vec{b} , \vec{c} are unit vectors. Therefore, $|\vec{a}| = 1$, $|\vec{b}| = 1$ and $|\vec{c}| = 1$

Also,
$$
\vec{a} + \vec{b} + \vec{c} = \vec{0}
$$
 (given)
\n⇒ $|\vec{a} + \vec{b} + \vec{c}|^2 = 0$
\n⇒ $|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$
\n⇒ $1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$
\n⇒ $3 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$
\n⇒ $(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -\frac{3}{2}$
\n30. (a) : $\vec{a} = 3\hat{i} - 6\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - 4\hat{j} + \lambda \hat{k}$
\nSince, \vec{a} and \vec{b} are parallel $\therefore \vec{a} \times \vec{b} = \vec{0}$
\n⇒ $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -6 & 1 \end{vmatrix} = \vec{0}$
\n⇒ $(-6\lambda + 4)\hat{i} - (3\lambda - 2)\hat{j} + (-12 + 12)\hat{k} = \vec{0}$
\n⇒ $(-6\lambda + 4)\hat{i} + (2 - 3\lambda)\hat{j} = 0\hat{i} + 0\hat{j}$
\nComparing coefficients of \hat{i} and \hat{j} , we get
\n $-6\lambda + 4 = 0$ and $2 - 3\lambda = 0 \Rightarrow \lambda = 2/3$
\n31. (b) : The given vectors will be at right angles if
\ntheir dot product vanishes, *i.e.*,
\n $(2\hat{i} - 4\hat{j} + \hat{k}) \cdot (4\hat{i} - 8\hat{j} + \lambda \hat{k}) = 0$
\n⇒ $8 + 32 + \lambda = 0 \Rightarrow \lambda = -40$

⇒
$$
|\vec{a}|^2 - \lambda^2 |\vec{b}|^2 = 0
$$
 ⇒ $\lambda^2 = \frac{|\vec{a}|^2}{|\vec{b}|^2}$ ⇒ $\lambda = \frac{|\vec{a}|}{|\vec{b}|} = \frac{3}{4}$
\n36. (c) : Position vector of \overrightarrow{AB}
\n $= (2-1)\hat{i} + (1-1)\hat{j} + (3-1)\hat{k} = \hat{i} + 2\hat{k}$
\n37 (b) : Position vector of \overrightarrow{AC}
\n $= (3-1)\hat{i} + (2-1)\hat{j} + (2-1)\hat{k} = 2\hat{i} + \hat{j} + \hat{k}$
\n38. (d) : Position vector of \overrightarrow{AD}
\n $= (3-1)\hat{i} + (3-1)\hat{j} + (4-1)\hat{k} = 2\hat{i} + 2\hat{j} + 3\hat{k}$
\n39. (b) : Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$
\nNow, $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 2 \\ 2 & 1 & 1 \end{vmatrix} = \hat{i}(0-2) - \hat{j}(1-4) + \hat{k}(1-0)$
\n $= -2\hat{i} + 3\hat{j} + \hat{k}$
\n⇒ $|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-2)^2 + 3^2 + 1^2}$
\n $= \sqrt{4+9+1} = \sqrt{14}$
\n∴ Area of $\triangle ABC = \frac{1}{2}\sqrt{14}$ sq. units
\n40. (a) : Unit vector along $\overrightarrow{AD} = \frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$
\n $= \frac{2\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{2^2 + 2^2 + 3^2}} = \frac{2\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{4 + 4 + 9}} = \frac{1}{\sqrt{17}}(2\hat{i} + 2\hat{j} + 3\hat{k})$
\n41. (a) : $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{$

3

 \overline{a}

44. (d) : If the given points lie on the straight line, then the points will be collinear and so area of $\triangle ABC = 0.$

$$
\Rightarrow \quad |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| = 0
$$

[\therefore If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the three vertices *A*, *B* and *C* of $\triangle ABC$, then area of triangle

$$
= \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|
$$

45. (b): Here, $|\vec{a}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36}$
 $= \sqrt{49} = 7$

 \therefore Unit vector in the direction of vector \vec{a} is

$$
\hat{a} = \frac{2\hat{i} + 3\hat{j} + 6\hat{k}}{7} = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}
$$

46. (b) : Here, (4, 10) are the coordinates of *A*.

 \therefore P.V. of $A = 4\hat{i} + 10\hat{j}$

- **47. (c) :** Here, (9, 7) are the coordinates of *B*.
- \therefore P.V. of *B* = $9\hat{i} + 7\hat{j}$
- **48. (b) :** Here, P.V. of $A = 4\hat{i} + 10\hat{j}$ and P.V. of $C = 4\hat{i} + 2\hat{j}$

$$
\therefore \overrightarrow{AC} = (4 - 4) \hat{i} + (2 - 10) \hat{j} = -8 \hat{j}
$$

49. (a) : Here $\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k}$

$$
\therefore |\vec{A}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}
$$

$$
\therefore \quad \hat{A} = \frac{\vec{A}}{|\vec{A}|} = \frac{\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{14}} = \frac{1}{\sqrt{14}}\hat{i} + \frac{2}{\sqrt{14}}\hat{j} + \frac{3}{\sqrt{14}}\hat{k}
$$

50. (d): We have, $\vec{A} = 4\hat{i} + 3\hat{j}$ and $\vec{B} = 3\hat{i} + 4\hat{j}$

$$
\therefore |\vec{A}| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5
$$

and $|\vec{B}| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$

Thus, $|\vec{A}| + |\vec{B}| = 5 + 5 = 10$

51. (b): $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$

Resultant of \vec{a} and \vec{b} is $\vec{a} + \vec{b}$

$$
= (2\hat{i} + \hat{j} + \hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k}) = 3\hat{i} + 3\hat{j} + 4\hat{k}
$$

∴ $|\vec{a} + \vec{b}| = \sqrt{3^2 + 3^2 + 4^2} = \sqrt{9 + 9 + 16} = \sqrt{34}$

Also, the magnitude of a vector can never be negative. Hence, both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.

52. (d) : Sum of the given vectors

$$
= (\hat{i} + \hat{j} + \hat{k}) + (2\hat{i} - \hat{j} - \hat{k}) + (2\hat{j} + 6\hat{k}) = 3\hat{i} + 2\hat{j} + 6\hat{k}
$$

 \therefore The unit vector in the direction of the sum of the given vectors

$$
=\frac{3\hat{i}+2\hat{j}+6\hat{k}}{\sqrt{3^2+2^2+6^2}}=\frac{3\hat{i}+2\hat{j}+6\hat{k}}{\sqrt{9+4+36}}=\frac{1}{7}(3\hat{i}+2\hat{j}+6\hat{k})
$$

Hence, Assertion is wrong.

Also, \overline{z} $\frac{\vec{a}}{\left|\vec{a}\right|}$ is a unit vector which is parallel to \vec{a} .

Hence, Reason is correct.

53. (a) :
$$
\vec{a} = \hat{i} + \hat{j} - 3\hat{k}
$$
, $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$
\n $\vec{a} \cdot \vec{b} = (\hat{i} + \hat{j} - 3\hat{k}) \cdot (2\hat{i} + \hat{j} + \hat{k})$
\n $= 1 \cdot 2 + 1 \cdot 1 + (-3) \cdot 1 = 2 + 1 - 3 = 0$
\n $\implies \cos \theta = 0 \implies \theta = \frac{\pi}{2}$

Hence, \vec{a} and \vec{b} are perpendicular to each other. Hence, both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

54. (d):
$$
\vec{a} = \hat{i} + 2\hat{j}
$$
, $\vec{b} = 2\hat{i} + \hat{j}$

Diagonals of the parallelogram are along $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. Now, $\vec{a} + \vec{b} = (\hat{i} + 2\hat{j}) + (2\hat{i} + \hat{j}) = 3\hat{i} + 3\hat{j}$

Now,
$$
a + b = (i + 2j) + (2i + j) = 3i + 3j
$$

and $\vec{a} - \vec{b} = (\hat{i} + 2\hat{j}) - (2\hat{i} + \hat{j}) = -\hat{i} + \hat{j}$

Let θ be the angle between these vectors, then

$$
\cos\theta = \frac{(3\hat{i}+3\hat{j})\cdot(-\hat{i}+\hat{j})}{\sqrt{9+9}\sqrt{1+1}} = \frac{-3+3}{\sqrt{18}\sqrt{2}} = 0
$$

 \Rightarrow $\theta = 90^{\circ}$

Hence, Assertion is wrong and Reason is correct.

55. (b): We have,
$$
|\vec{a}| = 3
$$
, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and
\n $\vec{a} + \vec{b} + \vec{c} = \vec{0} \implies (\vec{a} + \vec{b} + \vec{c})^2 = 0$
\n $\implies |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$
\n $\implies (3)^2 + (4)^2 + (5)^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$
\n $\implies \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{1}{2}[9 + 16 + 25] = -\frac{1}{2}(50) = -25$
\nNow, $\vec{a} + \vec{b} + \vec{c} = \vec{0} \implies \vec{b} + \vec{c} = -\vec{a}$
\n $\implies |\vec{b} + \vec{c}|^2 = |- \vec{a}|^2 \implies \vec{b}^2 + \vec{c}^2 + 2\vec{b} \cdot \vec{c} = \vec{a}^2$
\n $\implies \vec{b}^2 + \vec{c}^2 + 2\vec{b}\vec{c}\cos\theta = \vec{a}^2$
\n $\implies \cos\theta = \frac{\vec{a}^2 - \vec{b}^2 - \vec{c}^2}{2\vec{b}\vec{c}}$

Hence, both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.

56. (a) : Required length =
$$
\left| \frac{(3\hat{i} - \hat{j} - 2\hat{k}) \cdot (\hat{i} + 2\hat{j} - 3\hat{k})}{\sqrt{1^2 + 2^2 + (-3)^2}} \right|
$$

$$
\left| \frac{3 - 2 + 6}{\sqrt{1 + 4 + 9}} \right| = \frac{7}{\sqrt{14}}
$$
Also, vector projection of \vec{a} on $\vec{b} = (\vec{a} \cdot \hat{b}) = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \right)$

Hence, both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

57. (d):
$$
(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2
$$

\t\t\t\t\t $= (\vec{a}\vec{b}\sin\theta)^2 + (\vec{a}\vec{b}\cos\theta)^2 = \vec{a}^2\vec{b}^2$
\nHence, Association is wrong.
\nBut $\sin^2\theta + \cos^2\theta = 1$
\nHence, Reason is correct.
\n58. (d): $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 400$, $|\vec{a}| = 4$
\nWe know that,
\n $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$
\n $\Rightarrow 400 = (4)^2 |\vec{b}|^2 \Rightarrow 16 |\vec{b}|^2 = 400$
\n $\Rightarrow |\vec{b}|^2 = 25 \Rightarrow |\vec{b}| = 5$
\nHence, Association is wrong.
\n $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2$
\n $= (\vec{a}\vec{b}\sin\theta)^2 + (\vec{a}\vec{b}\cos\theta)^2 = \vec{a}^2\vec{b}^2$
\n $\Rightarrow (\vec{a} \times \vec{b})^2 = \vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2$
\nHence, Reason is correct.
\n59. (a) : Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$
= \frac{(2\hat{i}+3\hat{j}-\hat{k})\cdot(-\hat{i}+3\hat{j}+4\hat{k})}{\sqrt{(-1)^2+(3)^2+(4)^2}} = \frac{-2+9-4}{\sqrt{26}} = \frac{3}{\sqrt{26}}
$$

: Assertion and Reason are correct and Reason is the correct explanation of Assertion.

60. (b): If *A*, *B*, *C* are collinear, then $\overrightarrow{AB} = k\overrightarrow{AC}$

∴ $\overrightarrow{AB} \times \overrightarrow{AC} = \overrightarrow{0} \implies (\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{a}) = 0$

 $\Rightarrow \vec{b} \times \vec{c} + \vec{a} \times \vec{b} + \vec{c} \times \vec{a} = \vec{0}$ *i.e.*, $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$ Hence, both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.

SUBJECTIVE TYPE QUESTIONS

1. We have, $l = \cos{\frac{\pi}{3}} = \frac{1}{2}$, $m = \cos{\frac{\pi}{4}} = \frac{1}{\sqrt{2}}$ and $n = \cos{\theta}$ 1 2^{n+1} 4 1 $\frac{1}{2}$ and Now, $l^2 + m^2 + n^2 = 1$ \Rightarrow $\left(\frac{1}{2}\right)$ 2 1 $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + n^2 = 1$ $\left(\frac{1}{2}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} + n^{2} =$ \Rightarrow $\frac{1}{4} + \frac{1}{2} + n^2 = 1 \Rightarrow n^2 = \frac{1}{4} \Rightarrow n = \pm \frac{1}{4}$ 4 1 $\frac{1}{2} + n^2 = 1 \Rightarrow n^2 = \frac{1}{4}$ 1 $n^2 = 1 \Rightarrow n^2 = \frac{1}{4} \Rightarrow n = \pm \frac{1}{2}$ \Rightarrow cos $\theta = \pm \frac{1}{2}$ 2 But θ is an acute angle (given). \therefore $\theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$ **2.** Required sum = $\vec{a} + \vec{b} + \vec{c}$ $= (\hat{i} - 3\hat{k}) + (2\hat{j} - \hat{k}) + (2\hat{i} - 3\hat{j} + 2\hat{k})$ $= 3\hat{i} - \hat{j} - 2\hat{k}$.

3. Let $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = 4\hat{i} - 3\hat{j} + 2\hat{k}$. Then, the sum of the given vectors is

$$
\vec{c} = \vec{a} + \vec{b} = (2+4)\hat{i} + (3-3)\hat{j} + (-1+2)\hat{k} = 6\hat{i} + \hat{k}
$$

and $|\vec{c}| = |\vec{a} + \vec{b}| = \sqrt{6^2 + 1^2} = \sqrt{36 + 1} = \sqrt{37}$

$$
\therefore \quad \text{Unit vector, } \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{6\hat{i} + \hat{k}}{\sqrt{37}} = \frac{6}{\sqrt{37}}\hat{i} + \frac{1}{\sqrt{37}}\hat{k}
$$

4. Required position vector

$$
= \frac{2(\vec{a} + 2\vec{b}) - 1(2\vec{a} - \vec{b})}{2 - 1} = 5\vec{b}
$$

5. $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2$

$$
= \{|\vec{a}||\vec{b}|\sin\theta\}^2 + \{|\vec{a}||\vec{b}|\cos\theta\}^2
$$

$$
= |\vec{a}|^2 |\vec{b}|^2 \sin^2\theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2\theta
$$

$$
= |\vec{a}|^2 |\vec{b}|^2 = 25 \times 16
$$
 [.: $|\vec{a}| = 5$ and $|\vec{b}| = 4$]
= 400

6. Let
$$
\vec{a} = \hat{i} - 3\hat{k}
$$
 and $\vec{b} = 2\hat{j} + \hat{k}$

The area of a parallelogram with \vec{a} and \vec{b} as its adjacent sides is given by $|\vec{a} \times \vec{b}|$.

Now,
$$
\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -3 \\ 0 & 2 & 1 \end{vmatrix} = 6\hat{i} - \hat{j} + \hat{k}
$$

\n
$$
\therefore |\vec{a} \times \vec{b}| = \sqrt{(6)^2 + (-1)^2 + (2)^2} = \sqrt{36 + 1 + 4}
$$

 $=\sqrt{41}$ sq. units.

7. Projection of
$$
\vec{a}
$$
 on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$
= \frac{(2\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (2\hat{i} + 2\hat{j} + \hat{k})}{\sqrt{(2)^2 + (2)^2 + (1)^2}} = \frac{4 + 6 + 2}{3} = \frac{12}{3} = 4
$$

8. Let θ be the angle between the unit vectors \vec{a} and \vec{b} .

a b

$$
\therefore \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \vec{a} \cdot \vec{b} \qquad (\because |\vec{a}| = 1 = |\vec{b}|) \dots (1)
$$

\nNow, $1 = |\sqrt{2} \vec{a} - \vec{b}|$
\n $\Rightarrow 1 = |\sqrt{2} \vec{a} - \vec{b}|^2 = (\sqrt{2} \vec{a} - \vec{b}) \cdot (\sqrt{2} \vec{a} - \vec{b})$
\n $= 2 |\vec{a}|^2 - \sqrt{2} \vec{a} \cdot \vec{b} - \vec{b} \cdot \sqrt{2} \vec{a} + |\vec{b}|^2 = 2 - 2\sqrt{2} \vec{a} \cdot \vec{b} + 1$
\n $(\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a})$
\n $\Rightarrow \vec{a} \cdot \vec{b} = \frac{1}{\sqrt{2}} \Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$ [By using (1)]
\n $\therefore \theta = \pi/4$

9. Here, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and vector along *x*-axis is \hat{i} .

 \therefore Angle between \vec{a} and \hat{i} is given by

$$
\cos \theta = \frac{\vec{a} \cdot \hat{i}}{\sqrt{1^2 + 1^2 + 1^2} \cdot \sqrt{1^2}} = \frac{(\hat{i} + \hat{j} + \hat{k}) \cdot \hat{i}}{\sqrt{3} \cdot 1} = \frac{1}{\sqrt{3}}
$$

\n
$$
\Rightarrow \theta = \cos^{-1} \left(\frac{1}{\sqrt{3}}\right)
$$

\n10. Here $|\vec{a} + \vec{b}| = |\vec{a}|$
\n
$$
\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 \Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a}
$$

\n
$$
\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = \vec{a} \cdot \vec{a}
$$

\n
$$
\Rightarrow 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 0 \qquad [\because \vec{b} \cdot \vec{a} = \vec{a} \cdot \vec{b}]
$$

\n
$$
\Rightarrow (2\vec{a} + \vec{b}) \cdot \vec{b} = 0 \Rightarrow (2\vec{a} + \vec{b}) \perp \vec{b}
$$

11. Position vector which divides the line segment joining points with position vectors $3\vec{a} + \vec{b}$ and $\vec{a} - 3\vec{b}$ in the ratio 2 : 1 externally is given by
 $2(\vec{a} - 3\vec{b}) - 1(3\vec{a} + \vec{b})$ $2\vec{a} - 6\vec{b} - 3\vec{a} - \vec{b}$

$$
\frac{2(\vec{a} - 3\vec{b}) - 1(3\vec{a} + \vec{b})}{2 - 1} = \frac{2\vec{a} - 6\vec{b} - 3\vec{a} - \vec{b}}{1}
$$

$$
= -\vec{a} - 7\vec{b}
$$

12. Here, $\vec{a} = 5\hat{i} + 6\hat{j} - 2\hat{k}$ and $\vec{b} = 7\hat{i} + 6\hat{j} + 2\hat{k}$ Vector perpendicular to both \vec{a} and \vec{b} is

$$
\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 6 & -2 \\ 7 & 6 & 2 \end{vmatrix}
$$

= $\hat{i}(12 + 12) - \hat{j}(10 + 14) + \hat{k}(30 - 42)$
= $24\hat{i} - 24\hat{j} - 12\hat{k} = 12(2\hat{i} - 2\hat{j} - \hat{k})$

 \therefore Unit vector perpendicular to both \vec{a} and \vec{b}

$$
= \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \frac{24\hat{i} - 24\hat{j} - 12\hat{k}}{\sqrt{576 + 576 + 144}} = \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{\sqrt{1296}}
$$

$$
= \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{36} = \frac{1}{3}(2\hat{i} - 2\hat{j} - \hat{k})
$$

13. For any two non-zero vectors \vec{a} and \vec{b} , we have $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \implies |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$ $\Rightarrow \vec{a}^2 + \vec{b}^2 + 2\vec{a} \cdot \vec{b} = \vec{a}^2 + \vec{b}^2 - 2\vec{a} \cdot \vec{b}$ \Rightarrow 4 $\vec{a} \cdot \vec{b} = 0$ \Rightarrow $\vec{a} \cdot \vec{b} = 0$ So, \vec{a} and \vec{b} are perpendicular vectors. **14.** Let $A(2\hat{i} - \hat{j} + \hat{k})$, $B(3\hat{i} + 7\hat{j} + \hat{k})$ and $C(5\hat{i} + 6\hat{j} + 2\hat{k})$ Then, $\overrightarrow{AB} = (3-2)\hat{i} + (7+1)\hat{j} + (1-1)\hat{k} = \hat{i} + 8\hat{j}$ $\overrightarrow{AC} = (5-2)\hat{i} + (6+1)\hat{j} + (2-1)\hat{k} = 3\hat{i} + 7\hat{j} + \hat{k}$ $\vec{BC} = (5-3)\hat{i} + (6-7)\hat{j} + (2-1)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$ Now, angle between \overrightarrow{AC} and \overrightarrow{BC} is given by \Rightarrow cos $\theta = \frac{AC \cdot BC}{|AC||BC}$ $\frac{\overline{AC} \cdot \overline{BC}}{\overline{AC} || \overline{BC}} = \frac{6 - 7 + 1}{\sqrt{9 + 49 + 1}\sqrt{4 + 1 + 1}}$ $6 - 7 + 1$ $9 + 49 + 1\sqrt{4} + 1 + 1$

 \Rightarrow $\cos \theta = 0 \Rightarrow AC \perp BC$ So, *A*, *B*, *C* are the vertices of right angled triangle. **15.** We have $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$ $Now, (3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$ $= 6|\vec{a}|^2 + 21 \vec{a} \cdot \vec{b} - 10 \vec{a} \cdot \vec{b} - 35|\vec{b}|^2$ $= 6 |\vec{a}|^2 + 11 \vec{a} \cdot \vec{b} - 35 |\vec{b}|^2$ $= 6(2)^{2} + 11(1) - 35(1)^{2} = 24 + 11 - 35 = 0$ **16.** Given, $\vec{a} = \hat{i} + 2 \hat{j} - 3 \hat{k}$ and $\vec{b} = 3 \hat{i} - \hat{j} + 2 \hat{k}$ Now, $\vec{a} + \vec{b} = 4 \hat{i} + \hat{j} - \hat{k}$ Also, $\vec{a} - \vec{b} = -2 \hat{i} + 3 \hat{j} - 5 \hat{k}$ Now, $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (4 \hat{i} + \hat{j} - \hat{k}) \cdot (-2 \hat{i} + 3 \hat{j} - 5 \hat{k})$ $= (4)(-2) + (1)(3) + (-1)(-5) = -8 + 3 + 5 = 0$ Hence, $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are perpendicular to each other. **17.** Let $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$ Now, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ \Rightarrow $(\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (3\hat{i} - 2\hat{j} + \hat{k}) = \sqrt{(1)^2 + (-2)^2 + (3)^2}$ $\times \sqrt{(3)^2 + (-2)^2 + (1)^2} \cos \theta$ \Rightarrow 3 + 4 + 3 = $\sqrt{14} \times \sqrt{14} \cos \theta$ \Rightarrow $\cos \theta = \frac{10}{14}$ 5 7 ∴ $\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{25}{49}} =$ 24 49 2 \Rightarrow $\sin \theta = \frac{2\sqrt{6}}{7}$ **18.** Given, $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 3\hat{k}$ \therefore $2\vec{a} = 2\hat{i} - 2\hat{j} + 4\hat{k}$ $-\vec{b} = -3\hat{i} - 4\hat{j} + 5\hat{k}$ $3\vec{c} = 6\hat{i} - 3\hat{j} + 9\hat{k}$ Now, $2\vec{a} \cdot (-\vec{b} \times 3\vec{c}) = \begin{vmatrix} 2 & -2 & 4 \\ -3 & -4 & 5 \end{vmatrix}$ 3 -4 5 6 -3 9 − −3 − − $= 2(-36 + 15) + 2(-27 - 30) + 4(9 + 24)$ $= 2(-21) - 2(57) + 4(33)$ $= -42 - 114 + 132 = -24$ \therefore | $2\vec{a} \cdot (-\vec{b} \times 3\vec{c})$ | = |–24| = 24 **19.** Given, $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{c} = -3 \hat{i} + \hat{j} + 2 \hat{k}$ Now, $\vec{b} \times \vec{c} = \begin{vmatrix} i & j & k \\ 1 & -2 & 1 \end{vmatrix}$ $\times \vec{c} = |1 -$ − $\hat{\cdot}$ $\hat{\cdot}$ $\hat{\cdot}$ $1 -2 1$ 3 1 2

$$
= \hat{i} (-4-1) - \hat{j} (2+3) + \hat{k} (1-6)
$$

= -5 $\hat{i} - 5\hat{j} - 5\hat{k}$
∴ $\vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} + 3\hat{j} + \hat{k}) \cdot (-5\hat{i} - 5\hat{j} - 5\hat{k})$
= -10 - 15 - 5 = -30
20. ($\vec{r} \times \hat{i}$) \cdot ($\vec{r} \times \hat{j}$) + xy

$$
= [(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{i}] \cdot [(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{j})] + xy
$$

= (-y\hat{k} + z\hat{j}) \cdot (x\hat{k} - z\hat{i}) + xy = -xy + xy = 0

21. Take *A* to be as origin (0, 0, 0).

 \therefore Coordinates of *B* are (0, 1, 1) and coordinates of *C* are (3, –1, 4).

Let *D* be the mid point of *BC* and *AD* is a median of $\triangle ABC$.

$$
\therefore
$$
 Coordinates of *D* are $\left(\frac{3}{2}, 0, \frac{5}{2}\right)$
\nSo, length of $AD = \sqrt{\left(\frac{3}{2} - 0\right)^2 + (0)^2 + \left(\frac{5}{2} - 0\right)^2}$
\n
$$
= \sqrt{\frac{9}{4} + \frac{25}{4}} = \frac{\sqrt{34}}{2} \text{ units}
$$

\n22. $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$
\n \therefore $\vec{a} + \vec{b} = (2\hat{i} + 3\hat{j} - \hat{k}) + (\hat{i} - 2\hat{j} + \hat{k}) = 3\hat{i} + \hat{j}$
\n $|\vec{a} + \vec{b}| = \sqrt{3^2 + 1^2} = \sqrt{10}$
\n \therefore A vector of magnitude 5 units in the direction of
\n $\vec{a} + \vec{b}$ is $\frac{5(\vec{a} + \vec{b})}{|\vec{a} + \vec{b}|} = \frac{5(3\hat{i} + \hat{j})}{\sqrt{10}}$
\n23. Let $\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}$
\nNow, it is given that, \vec{d} is perpendicular to
\n $\vec{b} = \hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} - \hat{k}$
\n \therefore $\vec{d} \cdot \vec{b} = 0$ and $\vec{d} \cdot \vec{c} = 0$...(i)
\nand $3x + y - z = 0$...(ii)
\nAlso, $\vec{d} \cdot \vec{a} = 21$, where $\vec{a} = 4\hat{i} + 5\hat{j} - \hat{k}$
\n $\Rightarrow 4x + 5y - z = 21$...(iii)
\nEliminating *z* from (i) and (ii), we get
\n $16x + y = 0$...(iv)
\nEliminating *z* from (iii) and (iii), we get
\n $x + 4y = 2$

Solving (iv) and (v), we get

 $x = \frac{-1}{3}, y =$, $y = \frac{16}{3}$ Putting the values of *x* and *y* in (i), we get $z = \frac{13}{3}$ ∴ $\vec{d} = \frac{-1}{3}\hat{i} + \frac{16}{3}\hat{j} + \frac{13}{3}\hat{k}$ 16 3 $\frac{13}{3}\hat{k}$ is the required vector. **24.** Here, $\vec{a} = \hat{i} + \hat{j} + \hat{k}$; $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda \hat{i} + 2 \hat{j} + 3 \hat{k}$ $\Rightarrow \vec{b} + \vec{c} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$ The unit vector along $\vec{b} + \vec{c}$ is $\vec{p} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|}$ $= \frac{(2 + \lambda)\hat{i} + 6\hat{j} (2 + \lambda)^2 + 6^2 + (-2)$ $(2 + \lambda)i + 6j - 2$ $(2 + \lambda)^2 + 6^2 + (-2)^2$ λ λ $\frac{\hat{i} + 6\hat{j} - 2\hat{k}}{4} = \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 4\hat{k}}{4}$ $+$ 4 λ + $(2 + \lambda)i + 6j - 2$ 2 + 4 λ + 44 λ $λ^2 + 4λ$ $\hat{i} + 6\hat{j} - 2\hat{k}$ Also, $\vec{a} \cdot \vec{p} = 1$ (Given) $\Rightarrow \frac{(2+\lambda)+6-}{\sqrt{2}}$ $+$ 4 λ + $\frac{2 + \lambda + 6 - 2}{2} =$ $4\lambda + 44$ $\frac{1 + \lambda}{2 + 4\lambda + 44} = 1$ λ $λ^2 + 4λ$ $\Rightarrow \sqrt{\lambda^2 + 4\lambda + 44} = \lambda + 6$ $\Rightarrow \lambda^2 + 4\lambda + 44 = \lambda^2 + 12\lambda + 36$ \Rightarrow 8 $\lambda = 8 \Rightarrow \lambda = 1$ \therefore The required unit vector $\vec{p} = \frac{(2+1)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{1+4+44}}$ $(2 + 1)i + 6j - 2$ $1 + 4 + 44$ $\frac{\hat{i} + 6\hat{j} - 2\hat{k}}{1 - 4 + 44} = \frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k}).$ **25.** Two non zero vectors are parallel if and only if their cross product is zero vector. So, we have to prove that cross product of $\vec{a} - \vec{d}$ and $\vec{b} - \vec{c}$ is zero vector. Now, $(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = (\vec{a} \times \vec{b}) - (\vec{a} \times \vec{c}) - (\vec{d} \times \vec{b}) + (\vec{d} \times \vec{c})$ Since, it is given that $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ And, $\vec{d} \times \vec{b} = -\vec{b} \times \vec{d}$, $\vec{d} \times \vec{c} = -\vec{c} \times \vec{d}$ $\ \ (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = (\vec{c} \times \vec{d}) - (\vec{b} \times \vec{d}) + (\vec{b} \times \vec{d}) - (\vec{c} \times \vec{d}) = 0$ Hence, $\vec{a} - \vec{d}$ is parallel to $\vec{b} - \vec{c}$, where $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$. **26.** Let the required vector be $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. Also let, $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$ and $\vec{c} = \hat{i} + \hat{j} + \hat{k}$ $\vec{r} \cdot \vec{a} = 4$, $\vec{r} \cdot \vec{b} = 0$, $\vec{r} \cdot \vec{c} = 2$ (Given) $\implies x - y + z = 4$...(i) $2x + y - 3z = 0$...(ii) $x + y + z = 2$...(iii) Now (iii) – (i) ⇒ 2*y* = –2 ⇒ *y* = –1 From (ii) and (iii) $2x - 3z - 1 = 0, x + z - 3 = 0 \implies x = 2, z = 1$

∴ The required vector is $\vec{r} = 2\hat{i} - \hat{j} + \hat{k}$.

27. Here, $\vec{a} = 2\lambda^2 \hat{i} + 4\lambda \hat{j} + \hat{k}$ and $b = 7\hat{i} - 2\hat{j} + \lambda \hat{k}$ If θ is the angle between the vectors \vec{a} and \vec{b} , then $\cos \theta =$ $\frac{\vec{a} \cdot \vec{b}}{\left|\vec{a}\right| \left|\left|\vec{b}\right|$ ⋅ For θ to be obtuse, $\cos \theta < 0 \Rightarrow \vec{a} \cdot \vec{b} < 0$ $\Rightarrow (2\lambda^2 \hat{i} + 4\lambda \hat{j} + \hat{k}) \cdot (7\hat{i} - 2\hat{j} + \lambda \hat{k}) < 0$ $\Rightarrow 2\lambda^2 \cdot 7 + 4\lambda \cdot (-2) + 1 \cdot \lambda < 0$ \Rightarrow 14 λ^2 – 7 λ < 0 \Rightarrow λ (2 λ – 1) < 0 \Rightarrow Either $\lambda < 0$, $2\lambda -1 > 0$ or $\lambda > 0$, $2\lambda -1 < 0$ \Rightarrow Either $\lambda < 0, \lambda > \frac{1}{2}$ or $\lambda > 0, \lambda <$ $\lambda > \frac{1}{2}$ or $\lambda > 0, \lambda < \frac{1}{2}$ First alternative is impossible. ∴ λ > 0, λ < $\frac{1}{2}$ *i.e.*, 0 < λ < $\frac{1}{2}$ *i.e.*, λ ∈ $\left| 0, \frac{1}{2} \right|$ 28. Given, AABC with vertices *A*(1, 1, 2), *B*(2, 3, 5) and *C*(1, 5, 5) Now, $\overrightarrow{AB}(2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k}$ $= \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{AC}(1-1)\hat{i} + (5-1)\hat{j} + (5-2)\hat{k}$ $= 4 \hat{j} + 3 \hat{k}$. \therefore $(\overrightarrow{AB} \times \overrightarrow{AC}) =$ \hat{i} \hat{j} \hat{k} 1 2 3 0 4 3 $= -6\hat{i} - 3\hat{j} + 4\hat{k}$ Hence, area of $\triangle ABC = \frac{1}{2} | \overrightarrow{AB} \times$ $\frac{1}{2}$ $\overrightarrow{AB} \times \overrightarrow{AC}$ $=\frac{1}{2}\sqrt{(-6)^2+(-3)^2+}$ $\frac{1}{2}\sqrt{(-6)^2+(-3)^2+4^2}$ $=\frac{1}{2}\sqrt{61}$ sq. units **29.** Given, $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$...(i) and $\vec{a} \cdot (\vec{b} + \vec{c}) = 0$, $\vec{b} \cdot (\vec{c} + \vec{a}) = 0$, $\vec{c} \cdot (\vec{a} + \vec{b}) = 0$ $\ \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b}$ $= 0 + 0 + 0 = 0$ $\Rightarrow 2(\vec{a} \cdot \vec{b}) + 2(\vec{b} \cdot \vec{c}) + 2(\vec{c} \cdot \vec{a}) = 0$...(ii) Now $|\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c})$ $= (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a} + (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{b} + (\vec{a} + \vec{b} + \vec{c}) \cdot \vec{c}$ $= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c}$ $= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b}) + 2(\vec{b} \cdot \vec{c}) + 2(\vec{c} \cdot \vec{a})$ $= 3^2 + 4^2 + 5^2$ $[Using (i) and (ii)]$ $= 50$ $\therefore |\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2}.$

30. Let
$$
\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}
$$
 and $b = 2\hat{i} + 4\hat{j} - 5\hat{k}$
Then diagonal \overrightarrow{AC} of the parallelogram is

$$
\vec{p} = \vec{a} + \vec{b}
$$
\n
$$
\vec{p} = \vec{a} + \vec{b}
$$
\n
$$
\vec{a} + \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} + 2\hat{i} + 4\hat{j} - 5\hat{k}
$$
\n
$$
\vec{a} = 3\hat{i} + 6\hat{j} - 2\hat{k}
$$
\n
$$
= 3\hat{i} + 6\hat{j} - 2\hat{k}
$$
\n
$$
\vec{p} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{9 + 36 + 4} = \frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})
$$
\nNow, diagonal \vec{BD} of the parallelogram is
\n $\vec{p}' = \vec{b} - \vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} - \hat{i} - 2\hat{j} - 3\hat{k} = \hat{i} + 2\hat{j} - 8\hat{k}$
\nTherefore unit vector parallel to it is
\n $\frac{\vec{p}'}{|\vec{r}|} = \frac{\hat{i} + 2\hat{j} - 8\hat{k}}{\sqrt{1 + 4 + 64}} = \frac{1}{\sqrt{69}}(\hat{i} + 2\hat{j} - 8\hat{k})$
\n31. Given, $\triangle ABC$ with vertices
\n $A(1,2,3)=\hat{i} + 2\hat{j} + 3\hat{k}$, $B(2,-1,4)=2\hat{i} - \hat{j} + 4\hat{k}$,
\n $C(4,5,-1)=4\hat{i} + 5\hat{j} - \hat{k}$
\nNow $\overline{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (2\hat{i} - \hat{j} + 4\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$
\n $= \hat{i} - 3\hat{j} + \hat{k}$.
\n $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (4\hat{i} + 5\hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k})$
\n $= 3\hat{i} + 3\hat{j} - 4\hat{k}$.
\n $\overrightarrow{AB} = \overrightarrow{OB} - \over$

33. We have $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ Let $\vec{r} = \vec{a} + \vec{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{p} = \vec{a} - \vec{b} = -\hat{i} - 2\hat{k}$

A unit vector perpendicular to both \vec{r} and \vec{p} is given as $\pm \frac{\vec{r} \times}{1}$ $\frac{1}{2}$. $\frac{1}{2}$

× $\frac{\vec{r} \times \vec{p}}{\vec{r} \times \vec{p}}$. Now, $\vec{r} \times \vec{p}$ *i j k* $\times \vec{p} = |2 \quad 3 \quad 4| = -2i + 4j - 2k$ − − $= -2i + 4j \hat{i}$ \hat{j} \hat{k} 2 3 $4|=-2\hat{i}+4\hat{j}-2\hat{k}$ 0 -1 -2 $2i + 4j - 2$ So, the required unit vector is $= \pm \frac{(-2i + 4j - 2k)}{2i}$ $(-2)^{2} + 4^{2} + (-2)$ $\frac{2i + 4j - 2k}{i} = \pm \frac{(i - 2j + k)}{i}$ $(2)^2 + 4^2 + (-2)^2$ 2 $2^2 + 4^2 + (-2)^2$ $\sqrt{6}$ $\frac{\hat{i}+4\hat{j}-2\hat{k}}{2\hat{j}+\hat{k}} = \pm \frac{(\hat{i}-2\hat{j}+\hat{k})}{\sqrt{2}}.$ **34.** Given, $\hat{a} + \hat{b} = \hat{c}$ \Rightarrow $(\hat{a} + \hat{b}) \cdot (\hat{a} + \hat{b}) = \hat{c} \cdot \hat{c}$ $\Rightarrow \hat{a} \cdot \hat{a} + \hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{b} + \hat{b} \cdot \hat{a} = \hat{c} \cdot \hat{c}$ \Rightarrow 1 + $\hat{a} \cdot \hat{b}$ + 1 + $\hat{a} \cdot \hat{b}$ = 1 $\Rightarrow 2\hat{a} \cdot \hat{b} = -1$...(i) Now, $(\hat{a} - \hat{b})^2 = (\hat{a} - \hat{b}) \cdot (\hat{a} - \hat{b})$ $= \hat{a} \cdot \hat{a} - \hat{a} \cdot \hat{b} - \hat{b} \cdot \hat{a} + \hat{b} \cdot \hat{b} = 1 - \hat{a} \cdot \hat{b} - \hat{a} \cdot \hat{b} + 1$ $= 2 - 2\hat{a} \cdot \hat{b} = 2 - (-1)$ [Using(i)] $=$ 3 \therefore $|\hat{a}-\hat{b}| = \sqrt{3}$ **35.** Given $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$ Let $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$ Now we have, $\vec{a} \times \vec{c} = \vec{b}$ \Rightarrow $(\hat{i} + \hat{j} + \hat{k}) \times (\hat{x} + \hat{i} + \hat{k}) + \hat{k} = \hat{j} - \hat{k}$ \Rightarrow |1 1 1|=j- \hat{i} \hat{j} \hat{k} $\hat{i} - \hat{k}$ *i j k x y z* 1 1 $1 = j - k$ $\Rightarrow \hat{i}(z-y) - \hat{j}(z-x) + \hat{k}(y-x) = \hat{j} - \hat{k}$ \Rightarrow $z - y = 0$, $x - z = 1$ and $y - x = -1$ \Rightarrow $y = z, x - z = 1, x - y = 1$ (i) Also, we have $\vec{a} \cdot \vec{c} = 3$ \Rightarrow $(\hat{i} + \hat{j} + \hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 3$ \Rightarrow $x + y + z = 3$ \Rightarrow $x + x - 1 + x - 1 = 3$ [Using (i)] ⇒ $3x - 2 = 3$ ⇒ $x = \frac{5}{3}$, $y = \frac{2}{3}$, $z =$ 2 3 , $y = \frac{2}{3}$, $z = \frac{2}{3}$ Hence, $\vec{c} = \frac{5}{2}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$ 3 2 3 2 $\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$

$$
36. \quad |\vec{a}| = |\vec{b}| = |\vec{c}| \quad \text{(Given)} \qquad \qquad \dots (i)
$$

and
$$
\vec{a} \cdot \vec{b} = 0
$$
, $\vec{b} \cdot \vec{c} = 0$, $\vec{c} \cdot \vec{a} = 0$...(ii)

Let $(\vec{a} + \vec{b} + \vec{c})$ be inclined to vectors \vec{a} , \vec{b} , \vec{c} by angles α , β and γ respectively. Then

$$
\cos \alpha = \frac{(\vec{a} + \vec{b} + \vec{c}) \cdot \vec{a}}{|\vec{a} + \vec{b} + \vec{c}| |\vec{a}|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{|\vec{a} + \vec{b} + \vec{c}| |\vec{a}|}
$$

$$
= \frac{|\vec{a}|^2 + 0 + 0}{|\vec{a} + \vec{b} + \vec{c}| |\vec{a}|} \qquad \qquad \text{[Using (ii)]}
$$

$$
= \frac{|\vec{a}|}{|\vec{a} + \vec{b} + \vec{c}|} \qquad \qquad \dots \text{(iii)}
$$

Similarly,
$$
\cos \beta = \frac{|\vec{b}|}{|\vec{a} + \vec{b} + \vec{c}|}
$$
 ...(iv)

and
$$
\cos \gamma = \frac{|\vec{c}|}{|\vec{a} + \vec{b} + \vec{c}|}
$$
 ...(v)

From (i), (iii), (iv) and (v), we get

cos α = cos β = cos $\gamma \Rightarrow \alpha = \beta = \gamma$

Hence, the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to the vector \vec{a} , \vec{b} and \vec{c} .

Also the angle between them is given as

$$
\alpha = \cos^{-1}\left(\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|}\right), \ \beta = \cos^{-1}\left(\frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|}\right),
$$

\n
$$
\gamma = \cos^{-1}\left(\frac{|\vec{c}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)
$$

\n37. We have, $A(2\hat{i}-\hat{j}+\hat{k})$, $B(\hat{i}-3\hat{j}-5\hat{k})$ and
\n $C(3\hat{i}-4\hat{j}-4\hat{k})$
\nThen, $\overrightarrow{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k}$
\n $= -\hat{i} - 2\hat{j} - 6\hat{k}$
\n $\overrightarrow{AC} = (3-2)\hat{i} + (-4+1)\hat{j} + (-4-1)\hat{k} = \hat{i} - 3\hat{j} - 5\hat{k}$
\nand $\overrightarrow{BC} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$
\nNow angle between \overrightarrow{AC} and \overrightarrow{BC} is given by
\n $\cos\theta = \frac{\overrightarrow{AC} \cdot (\overrightarrow{BC})}{|\overrightarrow{AC}| |\overrightarrow{BC}|} = \frac{2+3-5}{\sqrt{1+9+25} \cdot \sqrt{4+1+1}}$
\n $\Rightarrow \cos\theta = 0 \Rightarrow BC \perp AC$
\nSo, *A*, *B*, *C* are vertices of right angled triangle.

Now area of
$$
\triangle ABC = \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BC}|
$$

= $\frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & -5 \\ 2 & -1 & 1 \end{vmatrix} = \frac{1}{2} |(-3-5)\hat{i} - (1+10)\hat{j} + (-1+6)\hat{k}|$

Then diagonal \overrightarrow{AC} of the parallelogram is $\vec{p} = \vec{a} + \vec{b}$ $= 2\hat{i} - 4\hat{j} - 5\hat{k} + 2\hat{i} + 2\hat{j} + 3\hat{k} = 4\hat{i} - 2\hat{j} - 2\hat{k}$ Therefore, unit vector parallel to it is $\overline{1}$ $\frac{\vec{p}}{\vec{p}} = \frac{4\hat{i} - 2\hat{j} - 2\hat{k}}{\sqrt{2(1-\hat{j} - 4)}} = \frac{2\hat{i} - \hat{j} - \hat{k}}{\sqrt{2}}$ *p* $\frac{\vec{p}}{|\vec{p}|} = \frac{4i - 2j - 2k}{\sqrt{16 + 4 + 4}} = \frac{2i - j - k}{\sqrt{6}}$ 2 6

Now, diagonal \overrightarrow{BD} of the parallelogram is $\vec{p}' = \vec{b} - \vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} - 2\hat{i} + 4\hat{j} + 5\hat{k} = 6\hat{j} + 8\hat{k}$ Therefore, unit vector parallel to it is \overline{a} $\frac{\vec{p}'}{\vec{p}'} = \frac{6\hat{j} + 8\hat{k}}{\sqrt{26 \times 64}} = \frac{6\hat{j} + 8\hat{k}}{10} = \frac{3\hat{j} + 4\hat{k}}{5}$ *p* $\frac{\vec{p}'}{|\vec{p}'|} = \frac{6j + 8k}{\sqrt{36 + 64}} = \frac{6j + 8k}{10} = \frac{3j + 4k}{5}$ $6j+8$ $36 + 64$ $6j+8$ 10 $3j + 4$ 5 Now, $\vec{p} \times \vec{p}$ \hat{i} \hat{i} \hat{k} $\vec{p} \times \vec{p}$ *i j k* $\times \vec{p}' = |4 -2 -2|$ 0 6 8 $= \hat{i}(-16+12) - \hat{i}(32-0) + \hat{k}(24-0)$ $=-4\hat{i} - 32\hat{j} + 24\hat{k}$ \therefore Area of parallelogram = $|\vec{p} \times \vec{p}'|$ 2 $=\frac{\sqrt{16} + 1024 + 576}{2} = 2\sqrt{101}$ sq. units. **39.** Here $\vec{a} = 3\hat{i} - \hat{j}$, $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$ We have to express : $\vec{b} = \vec{b}_1 + \vec{b}_2$, where $\vec{b}_1 \mid |\vec{a} \text{ and } \vec{b}_2 \perp \vec{a}$ Let $\vec{b}_1 = \lambda \vec{a} = \lambda (3\hat{i} - \hat{j})$ and $\vec{b}_2 = x\hat{i} + y\hat{j} + z\hat{k}$

Now $\vec{b}_2 \perp \vec{a} \Rightarrow \vec{b}_2 \cdot \vec{a} = 0$

$$
(\hat{x}_1^2 + y_1^2 + z_k^2) \cdot (3\hat{i} - \hat{j}) = 0
$$
\n
$$
\Rightarrow 3x - y = 0 \qquad \dots (i)
$$
\nNow, $\vec{b} = \vec{b}_1 + \vec{b}_2$ \n
$$
\Rightarrow 2\hat{i} + \hat{j} - 3\hat{k} = \lambda (3\hat{i} - \hat{j}) + (x\hat{i} + y\hat{j} + z\hat{k})
$$
\nOn comparing, we get\n
$$
2 = 3\lambda + x
$$
\n
$$
1 = -\lambda + y
$$
\n
$$
\Rightarrow x + 3y = 5 \qquad \dots (ii)
$$
\nand $-3 = z \Rightarrow z = -3$ \nSolving (i) and (ii), we get $x = \frac{1}{2}, y = \frac{3}{2}$ \n
$$
\therefore 1 = -\lambda + y \Rightarrow 1 = -\lambda + \frac{3}{2} \Rightarrow \lambda = \frac{1}{2}
$$
\nHence, $\vec{b}_1 = \lambda (3\hat{i} - \hat{j}) = \frac{3}{2}\hat{i} - \frac{1}{2}$ \nand $\vec{b}_2 = \frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}$ \n40. Given, position vector of $A = \hat{i} + \hat{j} + \hat{k}$ \nPosition vector of $B = 2\hat{i} + 5\hat{j}$ \nPosition vector of $C = 3\hat{i} + 2\hat{j} - 3\hat{k}$ \n
$$
\therefore \overrightarrow{AB} = (2\hat{i} + 5\hat{j}) - (\hat{i} + \hat{j} + \hat{k}) = \hat{i} + 4\hat{j} - \hat{k}
$$
\nand $\overrightarrow{CD} = (\hat{i} - 6\hat{j} - \hat{k}) - (3\hat{i} + 2\hat{j} - 3\hat{k}) = -2\hat{i} - 8\hat{j} + 2\hat{k}$ \nNow $|\overrightarrow{AB}| = \sqrt{(1)^2 + (4)^2 + (1)^2} = \sqrt{18}$ \n $|\overrightarrow{CD}| = \sqrt{(-2)^2 + (-8)^2 + (2)^2} = \sqrt{4 + 64 + 4} = \sqrt{72} = 2\sqrt{18}$ \nLet θ be the angle between \overrightarrow{AB} and \overrightarrow{CD} .
\n<

 \Rightarrow cos $\theta = -1$ \Rightarrow $\theta = \pi$ Since, angle between \overrightarrow{AB} and \overrightarrow{CD} is 180°.

 \overrightarrow{AB} and \overrightarrow{CD} are collinear.